| | |
| | | #include <QtCore/QHash> |
| | | #include <QtCore/QAbstractNativeEventFilter> |
| | | #include <QtCore/QCoreApplication> |
| | | #include <QtCore/QOperatingSystemVersion> |
| | | #include <QtCore/QScopeGuard> |
| | | |
| | | #include <QtCore/private/qsystemlibrary_p.h> |
| | | #include <QtGui/private/qhighdpiscaling_p.h> |
| | | |
| | | #include "qwkcoreglobal_p.h" |
| | | |
| | | #include <shellscalingapi.h> |
| | | #include <dwmapi.h> |
| | | |
| | | namespace QWK { |
| | | |
| | | static constexpr const auto kAutoHideTaskBarThickness = |
| | | quint8{2}; // The thickness of an auto-hide taskbar in pixels. |
| | | |
| | | using WndProcHash = QHash<HWND, Win32WindowContext *>; // hWnd -> context |
| | | Q_GLOBAL_STATIC(WndProcHash, g_wndProcHash); |
| | | Q_GLOBAL_STATIC(WndProcHash, g_wndProcHash) |
| | | |
| | | static WNDPROC g_qtWindowProc = nullptr; // Original Qt window proc function |
| | | |
| | | struct DynamicApis { |
| | | decltype(&::DwmFlush) pDwmFlush = nullptr; |
| | | decltype(&::GetDpiForWindow) pGetDpiForWindow = nullptr; |
| | | decltype(&::GetSystemMetricsForDpi) pGetSystemMetricsForDpi = nullptr; |
| | | decltype(&::GetDpiForMonitor) pGetDpiForMonitor = nullptr; |
| | | |
| | | DynamicApis() { |
| | | QSystemLibrary user32(QStringLiteral("user32.dll")); |
| | | pGetDpiForWindow = |
| | | reinterpret_cast<decltype(pGetDpiForWindow)>(user32.resolve("GetDpiForWindow")); |
| | | pGetSystemMetricsForDpi = reinterpret_cast<decltype(pGetSystemMetricsForDpi)>( |
| | | user32.resolve("GetSystemMetricsForDpi")); |
| | | |
| | | QSystemLibrary shcore(QStringLiteral("shcore.dll")); |
| | | pGetDpiForMonitor = |
| | | reinterpret_cast<decltype(pGetDpiForMonitor)>(shcore.resolve("GetDpiForMonitor")); |
| | | |
| | | QSystemLibrary dwmapi(QStringLiteral("dwmapi.dll")); |
| | | pDwmFlush = reinterpret_cast<decltype(pDwmFlush)>(dwmapi.resolve("DwmFlush")); |
| | | } |
| | | |
| | | ~DynamicApis() = default; |
| | | |
| | | static const DynamicApis &instance() { |
| | | static const DynamicApis inst{}; |
| | | return inst; |
| | | } |
| | | |
| | | private: |
| | | Q_DISABLE_COPY_MOVE(DynamicApis) |
| | | }; |
| | | |
| | | static inline constexpr bool operator==(const POINT &lhs, const POINT &rhs) noexcept { |
| | | return ((lhs.x == rhs.x) && (lhs.y == rhs.y)); |
| | | } |
| | | |
| | | static inline constexpr bool operator!=(const POINT &lhs, const POINT &rhs) noexcept { |
| | | return !operator==(lhs, rhs); |
| | | } |
| | | |
| | | static inline constexpr bool operator==(const SIZE &lhs, const SIZE &rhs) noexcept { |
| | | return ((lhs.cx == rhs.cx) && (lhs.cy == rhs.cy)); |
| | | } |
| | | |
| | | static inline constexpr bool operator!=(const SIZE &lhs, const SIZE &rhs) noexcept { |
| | | return !operator==(lhs, rhs); |
| | | } |
| | | |
| | | static inline constexpr bool operator>(const SIZE &lhs, const SIZE &rhs) noexcept { |
| | | return ((lhs.cx * lhs.cy) > (rhs.cx * rhs.cy)); |
| | | } |
| | | |
| | | static inline constexpr bool operator>=(const SIZE &lhs, const SIZE &rhs) noexcept { |
| | | return (operator>(lhs, rhs) || operator==(lhs, rhs)); |
| | | } |
| | | |
| | | static inline constexpr bool operator<(const SIZE &lhs, const SIZE &rhs) noexcept { |
| | | return (operator!=(lhs, rhs) && !operator>(lhs, rhs)); |
| | | } |
| | | |
| | | static inline constexpr bool operator<=(const SIZE &lhs, const SIZE &rhs) noexcept { |
| | | return (operator<(lhs, rhs) || operator==(lhs, rhs)); |
| | | } |
| | | |
| | | static inline constexpr bool operator==(const RECT &lhs, const RECT &rhs) noexcept { |
| | | return ((lhs.left == rhs.left) && (lhs.top == rhs.top) && (lhs.right == rhs.right) && |
| | | (lhs.bottom == rhs.bottom)); |
| | | } |
| | | |
| | | static inline constexpr bool operator!=(const RECT &lhs, const RECT &rhs) noexcept { |
| | | return !operator==(lhs, rhs); |
| | | } |
| | | |
| | | static inline constexpr QPoint point2qpoint(const POINT &point) { |
| | | return QPoint{int(point.x), int(point.y)}; |
| | | } |
| | | |
| | | static inline constexpr POINT qpoint2point(const QPoint &point) { |
| | | return POINT{LONG(point.x()), LONG(point.y())}; |
| | | } |
| | | |
| | | static inline constexpr QSize size2qsize(const SIZE &size) { |
| | | return QSize{int(size.cx), int(size.cy)}; |
| | | } |
| | | |
| | | static inline constexpr SIZE qsize2size(const QSize &size) { |
| | | return SIZE{LONG(size.width()), LONG(size.height())}; |
| | | } |
| | | |
| | | static inline constexpr QRect rect2qrect(const RECT &rect) { |
| | | return QRect{ |
| | | QPoint{int(rect.left), int(rect.top) }, |
| | | QSize{int(RECT_WIDTH(rect)), int(RECT_HEIGHT(rect))} |
| | | }; |
| | | } |
| | | |
| | | static inline constexpr RECT qrect2rect(const QRect &qrect) { |
| | | return RECT{LONG(qrect.left()), LONG(qrect.top()), LONG(qrect.right()), |
| | | LONG(qrect.bottom())}; |
| | | } |
| | | |
| | | static inline /*constexpr*/ QString hwnd2str(const WId windowId) { |
| | | // NULL handle is allowed here. |
| | | return QLatin1String("0x") + |
| | | QString::number(windowId, 16).toUpper().rightJustified(8, u'0'); |
| | | } |
| | | |
| | | static inline /*constexpr*/ QString hwnd2str(HWND hwnd) { |
| | | // NULL handle is allowed here. |
| | | return hwnd2str(reinterpret_cast<WId>(hwnd)); |
| | | } |
| | | |
| | | static inline bool isWin8Point1OrGreater() { |
| | | static const bool result = |
| | | QOperatingSystemVersion::current() >= QOperatingSystemVersion::Windows8_1; |
| | | return result; |
| | | } |
| | | |
| | | static inline bool isWin10OrGreater() { |
| | | static const bool result = |
| | | QOperatingSystemVersion::current() >= QOperatingSystemVersion::Windows10; |
| | | return result; |
| | | } |
| | | |
| | | static inline quint32 getDpiForWindow(HWND hwnd) { |
| | | Q_ASSERT(hwnd); |
| | | if (!hwnd) { |
| | | return USER_DEFAULT_SCREEN_DPI; |
| | | } |
| | | const DynamicApis &apis = DynamicApis::instance(); |
| | | if (apis.pGetDpiForWindow) { // Win10 |
| | | return apis.pGetDpiForWindow(hwnd); |
| | | } else if (apis.pGetDpiForMonitor) { // Win8.1 |
| | | HMONITOR monitor = ::MonitorFromWindow(hwnd, MONITOR_DEFAULTTONEAREST); |
| | | UINT dpiX{USER_DEFAULT_SCREEN_DPI}; |
| | | UINT dpiY{USER_DEFAULT_SCREEN_DPI}; |
| | | apis.pGetDpiForMonitor(monitor, MDT_EFFECTIVE_DPI, &dpiX, &dpiY); |
| | | return dpiX; |
| | | } else { // Win2K |
| | | HDC hdc = ::GetDC(nullptr); |
| | | const int dpiX = ::GetDeviceCaps(hdc, LOGPIXELSX); |
| | | const int dpiY = ::GetDeviceCaps(hdc, LOGPIXELSY); |
| | | ::ReleaseDC(nullptr, hdc); |
| | | return quint32(dpiX); |
| | | } |
| | | } |
| | | |
| | | static inline quint32 getResizeBorderThickness(HWND hwnd) { |
| | | Q_ASSERT(hwnd); |
| | | if (!hwnd) { |
| | | return 0; |
| | | } |
| | | const DynamicApis &apis = DynamicApis::instance(); |
| | | if (apis.pGetSystemMetricsForDpi) { |
| | | const quint32 dpi = getDpiForWindow(hwnd); |
| | | return apis.pGetSystemMetricsForDpi(SM_CXSIZEFRAME, dpi) + |
| | | apis.pGetSystemMetricsForDpi(SM_CXPADDEDBORDER, dpi); |
| | | } else { |
| | | return ::GetSystemMetrics(SM_CXSIZEFRAME) + ::GetSystemMetrics(SM_CXPADDEDBORDER); |
| | | } |
| | | } |
| | | |
| | | static inline std::optional<MONITORINFOEXW> getMonitorForWindow(HWND hwnd) { |
| | | Q_ASSERT(hwnd); |
| | | if (!hwnd) { |
| | | return std::nullopt; |
| | | } |
| | | // Use "MONITOR_DEFAULTTONEAREST" here so that we can still get the correct |
| | | // monitor even if the window is minimized. |
| | | HMONITOR monitor = ::MonitorFromWindow(hwnd, MONITOR_DEFAULTTONEAREST); |
| | | MONITORINFOEXW monitorInfo{}; |
| | | monitorInfo.cbSize = sizeof(monitorInfo); |
| | | ::GetMonitorInfoW(monitor, &monitorInfo); |
| | | return monitorInfo; |
| | | }; |
| | | |
| | | static inline bool isFullScreen(HWND hwnd) { |
| | | Q_ASSERT(hwnd); |
| | | if (!hwnd) { |
| | | return false; |
| | | } |
| | | RECT windowRect{}; |
| | | ::GetWindowRect(hwnd, &windowRect); |
| | | const std::optional<MONITORINFOEXW> mi = getMonitorForWindow(hwnd); |
| | | // Compare to the full area of the screen, not the work area. |
| | | return (windowRect == mi.value_or(MONITORINFOEXW{}).rcMonitor); |
| | | } |
| | | |
| | | static inline bool isWindowNoState(HWND hwnd) { |
| | | Q_ASSERT(hwnd); |
| | | if (!hwnd) { |
| | | return false; |
| | | } |
| | | #if 0 |
| | | WINDOWPLACEMENT wp{}; |
| | | wp.length = sizeof(wp); |
| | | ::GetWindowPlacement(hwnd, &wp); |
| | | return ((wp.showCmd == SW_NORMAL) || (wp.showCmd == SW_RESTORE)); |
| | | #else |
| | | const auto style = static_cast<DWORD>(::GetWindowLongPtrW(hwnd, GWL_STYLE)); |
| | | return (!(style & (WS_MINIMIZE | WS_MAXIMIZE))); |
| | | #endif |
| | | } |
| | | |
| | | static inline QPoint fromNativeLocalPosition(const QWindow *window, const QPoint &point) { |
| | | Q_ASSERT(window); |
| | | if (!window) { |
| | | return point; |
| | | } |
| | | #if 1 |
| | | return QHighDpi::fromNativeLocalPosition(point, window); |
| | | #else |
| | |
| | | case HTBORDER: |
| | | return Win32WindowContext::FixedBorder; |
| | | default: |
| | | break; |
| | | break; // unreachable |
| | | } |
| | | return Win32WindowContext::Outside; |
| | | } |
| | | |
| | | static bool isValidWindow(WId windowId, bool checkVisible, bool checkTopLevel) { |
| | | const auto hwnd = reinterpret_cast<HWND>(windowId); |
| | | if (::IsWindow(hwnd) == FALSE) { |
| | | static bool isValidWindow(HWND hWnd, bool checkVisible, bool checkTopLevel) { |
| | | if (::IsWindow(hWnd) == FALSE) { |
| | | return false; |
| | | } |
| | | const LONG_PTR styles = ::GetWindowLongPtrW(hwnd, GWL_STYLE); |
| | | if ((styles == 0) || (styles & WS_DISABLED)) { |
| | | const LONG_PTR styles = ::GetWindowLongPtrW(hWnd, GWL_STYLE); |
| | | if (styles & WS_DISABLED) { |
| | | return false; |
| | | } |
| | | const LONG_PTR exStyles = ::GetWindowLongPtrW(hwnd, GWL_EXSTYLE); |
| | | if ((exStyles == 0) || (exStyles & WS_EX_TOOLWINDOW)) { |
| | | const LONG_PTR exStyles = ::GetWindowLongPtrW(hWnd, GWL_EXSTYLE); |
| | | if (exStyles & WS_EX_TOOLWINDOW) { |
| | | return false; |
| | | } |
| | | RECT rect = {0, 0, 0, 0}; |
| | | if (::GetWindowRect(hwnd, &rect) == FALSE) { |
| | | if (::GetWindowRect(hWnd, &rect) == FALSE) { |
| | | return false; |
| | | } |
| | | if ((rect.left >= rect.right) || (rect.top >= rect.bottom)) { |
| | | return false; |
| | | } |
| | | if (checkVisible) { |
| | | if (::IsWindowVisible(hwnd) == FALSE) { |
| | | if (::IsWindowVisible(hWnd) == FALSE) { |
| | | return false; |
| | | } |
| | | } |
| | | if (checkTopLevel) { |
| | | if (::GetAncestor(hwnd, GA_ROOT) != hwnd) { |
| | | if (::GetAncestor(hWnd, GA_ROOT) != hWnd) { |
| | | return false; |
| | | } |
| | | } |
| | |
| | | // https://github.com/qt/qtbase/blob/e26a87f1ecc40bc8c6aa5b889fce67410a57a702/src/plugins/platforms/windows/qwindowscontext.cpp#L1556 |
| | | // In QWindowsContext::windowsProc(), the messages will be passed to all global native event |
| | | // filters, but because we have already filtered the messages in the hook WndProc function for |
| | | // convenience, Qt does not know we may have already process the messages and thus will call |
| | | // convenience, Qt does not know we may have already processed the messages and thus will call |
| | | // DefWindowProc(). Consequently, we have to add a global native filter that forwards the result |
| | | // of the hook function, telling Qt whether we have filtered the events before. Since Qt only |
| | | // handles Windows window messages in the main thread, it is safe to do so. |
| | |
| | | public: |
| | | bool nativeEventFilter(const QByteArray &eventType, void *message, |
| | | QT_NATIVE_EVENT_RESULT_TYPE *result) override { |
| | | // It has been observed that the pointer that Qt gives us is sometimes null on some |
| | | // machines. We need to guard against it in such scenarios. |
| | | if (!result) { |
| | | return false; |
| | | } |
| | | if (lastMessageHandled) { |
| | | *result = static_cast<QT_NATIVE_EVENT_RESULT_TYPE>(lastMessageResult); |
| | | return true; |
| | |
| | | |
| | | static inline void install() { |
| | | instance = new WindowsNativeEventFilter(); |
| | | qApp->installNativeEventFilter(instance); |
| | | installNativeEventFilter(instance); |
| | | } |
| | | |
| | | static inline void uninstall() { |
| | | qApp->removeNativeEventFilter(instance); |
| | | removeNativeEventFilter(instance); |
| | | delete instance; |
| | | instance = nullptr; |
| | | } |
| | |
| | | break; |
| | | } |
| | | |
| | | if (!isValidWindow(windowId, false, true)) { |
| | | if (!isValidWindow(hWnd, false, true)) { |
| | | return false; |
| | | } |
| | | |
| | |
| | | return true; |
| | | } |
| | | |
| | | // TODO: Uncomment and do something |
| | | // bool frameBorderVisible = Utils::isWindowFrameBorderVisible(); |
| | | |
| | | // TODO: Implement |
| | | // ... |
| | | // Main implementation |
| | | if (customWindowHandler(hWnd, message, wParam, lParam, result)) { |
| | | return true; |
| | | } |
| | | |
| | | return false; // Not handled |
| | | } |
| | |
| | | return (wParam == kMessageTag); |
| | | } |
| | | |
| | | static quint64 getKeyState() { |
| | | static inline quint64 getKeyState() { |
| | | quint64 result = 0; |
| | | const auto &get = [](const int virtualKey) -> bool { |
| | | return (::GetAsyncKeyState(virtualKey) < 0); |
| | |
| | | } |
| | | const auto screenPos = POINT{GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam)}; |
| | | POINT clientPos = screenPos; |
| | | if (::ScreenToClient(hWnd, &clientPos) == FALSE) { |
| | | return 0; |
| | | } |
| | | ::ScreenToClient(hWnd, &clientPos); |
| | | return MAKELPARAM(clientPos.x, clientPos.y); |
| | | }(); |
| | | #if 0 |
| | |
| | | #undef SEND_MESSAGE |
| | | } |
| | | |
| | | static bool requestForMouseLeaveMessage(HWND hWnd, bool nonClient) { |
| | | TRACKMOUSEEVENT tme; |
| | | SecureZeroMemory(&tme, sizeof(tme)); |
| | | static inline void requestForMouseLeaveMessage(HWND hWnd, bool nonClient) { |
| | | TRACKMOUSEEVENT tme{}; |
| | | tme.cbSize = sizeof(tme); |
| | | tme.dwFlags = TME_LEAVE; |
| | | if (nonClient) { |
| | |
| | | } |
| | | tme.hwndTrack = hWnd; |
| | | tme.dwHoverTime = HOVER_DEFAULT; |
| | | if (::TrackMouseEvent(&tme) == FALSE) { |
| | | return false; |
| | | } |
| | | return true; |
| | | ::TrackMouseEvent(&tme); |
| | | } |
| | | |
| | | bool Win32WindowContext::snapLayoutHandler(HWND hWnd, UINT message, WPARAM wParam, |
| | |
| | | // WM_MOUSELEAVE. |
| | | if (lastHitTestResult != WindowPart::ChromeButton && mouseLeaveBlocked) { |
| | | mouseLeaveBlocked = false; |
| | | std::ignore = requestForMouseLeaveMessage(hWnd, false); |
| | | requestForMouseLeaveMessage(hWnd, false); |
| | | } |
| | | break; |
| | | } |
| | |
| | | // in advance. |
| | | if (mouseLeaveBlocked) { |
| | | mouseLeaveBlocked = false; |
| | | std::ignore = requestForMouseLeaveMessage(hWnd, false); |
| | | requestForMouseLeaveMessage(hWnd, false); |
| | | } |
| | | } else { |
| | | if (mouseLeaveBlocked) { |
| | |
| | | return false; |
| | | } |
| | | |
| | | bool Win32WindowContext::customWindowHandler(HWND hWnd, UINT message, WPARAM wParam, |
| | | LPARAM lParam, LRESULT *result) { |
| | | switch (message) { |
| | | case WM_NCCALCSIZE: { |
| | | // Windows是根据这个消息的返回值来设置窗口的客户区(窗口中真正显示的内容) |
| | | // 和非客户区(标题栏、窗口边框、菜单栏和状态栏等Windows系统自行提供的部分 |
| | | // ,不过对于Qt来说,除了标题栏和窗口边框,非客户区基本也都是自绘的)的范 |
| | | // 围的,lParam里存放的就是新客户区的几何区域,默认是整个窗口的大小,正常 |
| | | // 的程序需要修改这个参数,告知系统窗口的客户区和非客户区的范围(一般来说可 |
| | | // 以完全交给Windows,让其自行处理,使用默认的客户区和非客户区),因此如果 |
| | | // 我们不修改lParam,就可以使客户区充满整个窗口,从而去掉标题栏和窗口边框 |
| | | // (因为这些东西都被客户区给盖住了。但边框阴影也会因此而丢失,不过我们会使 |
| | | // 用其他方式将其带回,请参考其他消息的处理,此处不过多提及)。但有个情况要 |
| | | // 特别注意,那就是窗口最大化后,窗口的实际尺寸会比屏幕的尺寸大一点,从而使 |
| | | // 用户看不到窗口的边界,这样用户就不能在窗口最大化后调整窗口的大小了(虽然 |
| | | // 这个做法听起来特别奇怪,但Windows确实就是这样做的),因此如果我们要自行 |
| | | // 处理窗口的非客户区,就要在窗口最大化后,将窗口边框的宽度和高度(一般是相 |
| | | // 等的)从客户区裁剪掉,否则我们窗口所显示的内容就会超出屏幕边界,显示不全。 |
| | | // 如果用户开启了任务栏自动隐藏,在窗口最大化后,还要考虑任务栏的位置。因为 |
| | | // 如果窗口最大化后,其尺寸和屏幕尺寸相等(因为任务栏隐藏了,所以窗口最大化 |
| | | // 后其实是充满了整个屏幕,变相的全屏了),Windows会认为窗口已经进入全屏的 |
| | | // 状态,从而导致自动隐藏的任务栏无法弹出。要避免这个状况,就要使窗口的尺寸 |
| | | // 小于屏幕尺寸。我下面的做法参考了火狐、Chromium和Windows Terminal |
| | | // 如果没有开启任务栏自动隐藏,是不存在这个问题的,所以要先进行判断。 |
| | | // 一般情况下,*result设置为0(相当于DefWindowProc的返回值为0)就可以了, |
| | | // 根据MSDN的说法,返回0意为此消息已经被程序自行处理了,让Windows跳过此消 |
| | | // 息,否则Windows会添加对此消息的默认处理,对于当前这个消息而言,就意味着 |
| | | // 标题栏和窗口边框又会回来,这当然不是我们想要的结果。根据MSDN,当wParam |
| | | // 为FALSE时,只能返回0,但当其为TRUE时,可以返回0,也可以返回一个WVR_常 |
| | | // 量。根据Chromium的注释,当存在非客户区时,如果返回WVR_REDRAW会导致子 |
| | | // 窗口/子控件出现奇怪的bug(自绘控件错位),并且Lucas在Windows 10 |
| | | // 上成功复现,说明这个bug至今都没有解决。我查阅了大量资料,发现唯一的解决 |
| | | // 方案就是返回0。但如果不存在非客户区,且wParam为TRUE,最好返回 |
| | | // WVR_REDRAW,否则窗口在调整大小可能会产生严重的闪烁现象。 |
| | | // 虽然对大多数消息来说,返回0都代表让Windows忽略此消息,但实际上不同消息 |
| | | // 能接受的返回值是不一样的,请注意自行查阅MSDN。 |
| | | |
| | | // Sent when the size and position of a window's client area must be |
| | | // calculated. By processing this message, an application can |
| | | // control the content of the window's client area when the size or |
| | | // position of the window changes. If wParam is TRUE, lParam points |
| | | // to an NCCALCSIZE_PARAMS structure that contains information an |
| | | // application can use to calculate the new size and position of the |
| | | // client rectangle. If wParam is FALSE, lParam points to a RECT |
| | | // structure. On entry, the structure contains the proposed window |
| | | // rectangle for the window. On exit, the structure should contain |
| | | // the screen coordinates of the corresponding window client area. |
| | | // The client area is the window's content area, the non-client area |
| | | // is the area which is provided by the system, such as the title |
| | | // bar, the four window borders, the frame shadow, the menu bar, the |
| | | // status bar, the scroll bar, etc. But for Qt, it draws most of the |
| | | // window area (client + non-client) itself. We now know that the |
| | | // title bar and the window frame is in the non-client area, and we |
| | | // can set the scope of the client area in this message, so we can |
| | | // remove the title bar and the window frame by let the non-client |
| | | // area be covered by the client area (because we can't really get |
| | | // rid of the non-client area, it will always be there, all we can |
| | | // do is to hide it) , which means we should let the client area's |
| | | // size the same with the whole window's size. So there is no room |
| | | // for the non-client area and then the user won't be able to see it |
| | | // again. But how to achieve this? Very easy, just leave lParam (the |
| | | // re-calculated client area) untouched. But of course you can |
| | | // modify lParam, then the non-client area will be seen and the |
| | | // window borders and the window frame will show up. However, things |
| | | // are quite different when you try to modify the top margin of the |
| | | // client area. DWM will always draw the whole title bar no matter |
| | | // what margin value you set for the top, unless you don't modify it |
| | | // and remove the whole top area (the title bar + the one pixel |
| | | // height window border). This can be confirmed in Windows |
| | | // Terminal's source code, you can also try yourself to verify |
| | | // it. So things will become quite complicated if you want to |
| | | // preserve the four window borders. |
| | | |
| | | // If `wParam` is `FALSE`, `lParam` points to a `RECT` that contains |
| | | // the proposed window rectangle for our window. During our |
| | | // processing of the `WM_NCCALCSIZE` message, we are expected to |
| | | // modify the `RECT` that `lParam` points to, so that its value upon |
| | | // our return is the new client area. We must return 0 if `wParam` |
| | | // is `FALSE`. |
| | | // If `wParam` is `TRUE`, `lParam` points to a `NCCALCSIZE_PARAMS` |
| | | // struct. This struct contains an array of 3 `RECT`s, the first of |
| | | // which has the exact same meaning as the `RECT` that is pointed to |
| | | // by `lParam` when `wParam` is `FALSE`. The remaining `RECT`s, in |
| | | // conjunction with our return value, can |
| | | // be used to specify portions of the source and destination window |
| | | // rectangles that are valid and should be preserved. We opt not to |
| | | // implement an elaborate client-area preservation technique, and |
| | | // simply return 0, which means "preserve the entire old client area |
| | | // and align it with the upper-left corner of our new client area". |
| | | const auto clientRect = |
| | | ((wParam == FALSE) ? reinterpret_cast<LPRECT>(lParam) |
| | | : &(reinterpret_cast<LPNCCALCSIZE_PARAMS>(lParam))->rgrc[0]); |
| | | if (isWin10OrGreater()) { |
| | | // Store the original top margin before the default window procedure applies the |
| | | // default frame. |
| | | const LONG originalTop = clientRect->top; |
| | | // Apply the default frame because we don't want to remove the whole window |
| | | // frame, we still need the standard window frame (the resizable frame border |
| | | // and the frame shadow) for the left, bottom and right edges. If we return 0 |
| | | // here directly, the whole window frame will be removed (which means there will |
| | | // be no resizable frame border and the frame shadow will also disappear), and |
| | | // that's also how most applications customize their title bars on Windows. It's |
| | | // totally OK but since we want to preserve as much original frame as possible, |
| | | // we can't use that solution. |
| | | const LRESULT hitTestResult = |
| | | ::DefWindowProcW(hWnd, WM_NCCALCSIZE, wParam, lParam); |
| | | if ((hitTestResult != HTERROR) && (hitTestResult != HTNOWHERE)) { |
| | | *result = hitTestResult; |
| | | return true; |
| | | } |
| | | // Re-apply the original top from before the size of the default frame was |
| | | // applied, and the whole top frame (the title bar and the top border) is gone |
| | | // now. For the top frame, we only has 2 choices: (1) remove the top frame |
| | | // entirely, or (2) don't touch it at all. We can't preserve the top border by |
| | | // adjusting the top margin here. If we try to modify the top margin, the |
| | | // original title bar will always be painted by DWM regardless what margin we |
| | | // set, so here we can only remove the top frame entirely and use some special |
| | | // technique to bring the top border back. |
| | | clientRect->top = originalTop; |
| | | } |
| | | const bool max = IsMaximized(hWnd); |
| | | const bool full = isFullScreen(hWnd); |
| | | // We don't need this correction when we're fullscreen. We will |
| | | // have the WS_POPUP size, so we don't have to worry about |
| | | // borders, and the default frame will be fine. |
| | | if (max && !full) { |
| | | // When a window is maximized, its size is actually a little bit more |
| | | // than the monitor's work area. The window is positioned and sized in |
| | | // such a way that the resize handles are outside the monitor and |
| | | // then the window is clipped to the monitor so that the resize handle |
| | | // do not appear because you don't need them (because you can't resize |
| | | // a window when it's maximized unless you restore it). |
| | | const quint32 frameSize = getResizeBorderThickness(hWnd); |
| | | clientRect->top += frameSize; |
| | | if (!isWin10OrGreater()) { |
| | | clientRect->bottom -= frameSize; |
| | | clientRect->left += frameSize; |
| | | clientRect->right -= frameSize; |
| | | } |
| | | } |
| | | // Attempt to detect if there's an autohide taskbar, and if |
| | | // there is, reduce our size a bit on the side with the taskbar, |
| | | // so the user can still mouse-over the taskbar to reveal it. |
| | | // Make sure to use MONITOR_DEFAULTTONEAREST, so that this will |
| | | // still find the right monitor even when we're restoring from |
| | | // minimized. |
| | | if (max || full) { |
| | | APPBARDATA abd{}; |
| | | abd.cbSize = sizeof(abd); |
| | | const UINT taskbarState = ::SHAppBarMessage(ABM_GETSTATE, &abd); |
| | | // First, check if we have an auto-hide taskbar at all: |
| | | if (taskbarState & ABS_AUTOHIDE) { |
| | | bool top = false, bottom = false, left = false, right = false; |
| | | // Due to ABM_GETAUTOHIDEBAREX was introduced in Windows 8.1, |
| | | // we have to use another way to judge this if we are running |
| | | // on Windows 7 or Windows 8. |
| | | if (isWin8Point1OrGreater()) { |
| | | const std::optional<MONITORINFOEXW> monitorInfo = |
| | | getMonitorForWindow(hWnd); |
| | | const RECT monitorRect = monitorInfo.value().rcMonitor; |
| | | // This helper can be used to determine if there's an |
| | | // auto-hide taskbar on the given edge of the monitor |
| | | // we're currently on. |
| | | const auto hasAutohideTaskbar = [monitorRect](const UINT edge) -> bool { |
| | | APPBARDATA abd2{}; |
| | | abd2.cbSize = sizeof(abd2); |
| | | abd2.uEdge = edge; |
| | | abd2.rc = monitorRect; |
| | | const auto hTaskbar = reinterpret_cast<HWND>( |
| | | ::SHAppBarMessage(ABM_GETAUTOHIDEBAREX, &abd2)); |
| | | return (hTaskbar != nullptr); |
| | | }; |
| | | top = hasAutohideTaskbar(ABE_TOP); |
| | | bottom = hasAutohideTaskbar(ABE_BOTTOM); |
| | | left = hasAutohideTaskbar(ABE_LEFT); |
| | | right = hasAutohideTaskbar(ABE_RIGHT); |
| | | } else { |
| | | int edge = -1; |
| | | APPBARDATA abd2{}; |
| | | abd2.cbSize = sizeof(abd2); |
| | | abd2.hWnd = ::FindWindowW(L"Shell_TrayWnd", nullptr); |
| | | HMONITOR windowMonitor = |
| | | ::MonitorFromWindow(hWnd, MONITOR_DEFAULTTONEAREST); |
| | | HMONITOR taskbarMonitor = |
| | | ::MonitorFromWindow(abd2.hWnd, MONITOR_DEFAULTTOPRIMARY); |
| | | if (taskbarMonitor == windowMonitor) { |
| | | ::SHAppBarMessage(ABM_GETTASKBARPOS, &abd2); |
| | | edge = int(abd2.uEdge); |
| | | } |
| | | top = (edge == ABE_TOP); |
| | | bottom = (edge == ABE_BOTTOM); |
| | | left = (edge == ABE_LEFT); |
| | | right = (edge == ABE_RIGHT); |
| | | } |
| | | // If there's a taskbar on any side of the monitor, reduce |
| | | // our size a little bit on that edge. |
| | | // Note to future code archeologists: |
| | | // This doesn't seem to work for fullscreen on the primary |
| | | // display. However, testing a bunch of other apps with |
| | | // fullscreen modes and an auto-hiding taskbar has |
| | | // shown that _none_ of them reveal the taskbar from |
| | | // fullscreen mode. This includes Edge, Firefox, Chrome, |
| | | // Sublime Text, PowerPoint - none seemed to support this. |
| | | // This does however work fine for maximized. |
| | | if (top) { |
| | | // Peculiarly, when we're fullscreen, |
| | | clientRect->top += kAutoHideTaskBarThickness; |
| | | } else if (bottom) { |
| | | clientRect->bottom -= kAutoHideTaskBarThickness; |
| | | } else if (left) { |
| | | clientRect->left += kAutoHideTaskBarThickness; |
| | | } else if (right) { |
| | | clientRect->right -= kAutoHideTaskBarThickness; |
| | | } |
| | | } |
| | | } |
| | | // ### TODO: std::ignore = Utils::syncWmPaintWithDwm(); // This should be executed |
| | | // at the very last. By returning WVR_REDRAW we can make the window resizing look |
| | | // less broken. But we must return 0 if wParam is FALSE, according to Microsoft |
| | | // Docs. |
| | | // **IMPORTANT NOTE**: |
| | | // If you are drawing something manually through D3D in your window, don't |
| | | // try to return WVR_REDRAW here, otherwise Windows exhibits bugs where |
| | | // client pixels and child windows are mispositioned by the width/height |
| | | // of the upper-left non-client area. It's confirmed that this issue exists |
| | | // from Windows 7 to Windows 10. Not tested on Windows 11 yet. Don't know |
| | | // whether it exists on Windows XP to Windows Vista or not. |
| | | *result = wParam == FALSE ? FALSE : WVR_REDRAW; |
| | | return true; |
| | | } |
| | | case WM_NCHITTEST: { |
| | | // 原生Win32窗口只有顶边是在窗口内部resize的,其余三边都是在窗口 |
| | | // 外部进行resize的,其原理是,WS_THICKFRAME这个窗口样式会在窗 |
| | | // 口的左、右和底边添加三个透明的resize区域,这三个区域在正常状态 |
| | | // 下是完全不可见的,它们由DWM负责绘制和控制。这些区域的宽度等于 |
| | | // (SM_CXSIZEFRAME + SM_CXPADDEDBORDER),高度等于 |
| | | // (SM_CYSIZEFRAME + SM_CXPADDEDBORDER),在100%缩放时,均等 |
| | | // 于8像素。它们属于窗口区域的一部分,但不属于客户区,而是属于非客 |
| | | // 户区,因此GetWindowRect获取的区域中是包含这三个resize区域的, |
| | | // 而GetClientRect获取的区域是不包含它们的。当把 |
| | | // DWMWA_EXTENDED_FRAME_BOUNDS作为参数调用 |
| | | // DwmGetWindowAttribute时,也能获取到一个窗口大小,这个大小介 |
| | | // 于前面两者之间,暂时不知道这个数据的意义及其作用。我们在 |
| | | // WM_NCCALCSIZE消息的处理中,已经把整个窗口都设置为客户区了,也 |
| | | // 就是说,我们的窗口已经没有非客户区了,因此那三个透明的resize区 |
| | | // 域,此刻也已经成为窗口客户区的一部分了,从而变得不透明了。所以 |
| | | // 现在的resize,看起来像是在窗口内部resize,是因为原本透明的地方 |
| | | // 现在变得不透明了,实际上,单纯从范围上来看,现在我们resize的地方, |
| | | // 就是普通窗口的边框外部,那三个透明区域的范围。 |
| | | // 因此,如果我们把边框完全去掉(就是我们正在做的事情),resize就 |
| | | // 会看起来是在内部进行,这个问题通过常规方法非常难以解决。我测试过 |
| | | // QQ和钉钉的窗口,它们的窗口就是在外部resize,但实际上它们是通过 |
| | | // 把窗口实际的内容,嵌入到一个完全透明的但尺寸要大一圈的窗口中实现 |
| | | // 的,虽然看起来效果还不错,但对于此项目而言,代码和窗口结构过于复 |
| | | // 杂,因此我没有采用此方案。然而,对于具体的软件项目而言,其做法也 |
| | | // 不失为一个优秀的解决方案,毕竟其在大多数条件下的表现都还可以。 |
| | | // |
| | | // 和1.x的做法不同,现在的2.x选择了保留窗口三边,去除整个窗口顶部, |
| | | // 好处是保留了系统的原生边框,外观较好,且与系统结合紧密,而且resize |
| | | // 的表现也有很大改善,缺点是需要自行绘制顶部边框线。原本以为只能像 |
| | | // Windows Terminal那样在WM_PAINT里搞黑魔法,但后来发现,其实只 |
| | | // 要颜色相近,我们自行绘制一根实线也几乎能以假乱真,而且这样也不会 |
| | | // 破坏Qt自己的绘制系统,能做到不依赖黑魔法就能实现像Windows Terminal |
| | | // 那样外观和功能都比较完美的自定义边框。 |
| | | |
| | | // A normal Win32 window can be resized outside of it. Here is the |
| | | // reason: the WS_THICKFRAME window style will cause a window has three |
| | | // transparent areas beside the window's left, right and bottom |
| | | // edge. Their width or height is eight pixels if the window is not |
| | | // scaled. In most cases, they are totally invisible. It's DWM's |
| | | // responsibility to draw and control them. They exist to let the |
| | | // user resize the window, visually outside of it. They are in the |
| | | // window area, but not the client area, so they are in the |
| | | // non-client area actually. But we have turned the whole window |
| | | // area into client area in WM_NCCALCSIZE, so the three transparent |
| | | // resize areas also become a part of the client area and thus they |
| | | // become visible. When we resize the window, it looks like we are |
| | | // resizing inside of it, however, that's because the transparent |
| | | // resize areas are visible now, we ARE resizing outside of the |
| | | // window actually. But I don't know how to make them become |
| | | // transparent again without breaking the frame shadow drawn by DWM. |
| | | // If you really want to solve it, you can try to embed your window |
| | | // into a larger transparent window and draw the frame shadow |
| | | // yourself. As what we have said in WM_NCCALCSIZE, you can only |
| | | // remove the top area of the window, this will let us be able to |
| | | // resize outside of the window and don't need much process in this |
| | | // message, it looks like a perfect plan, however, the top border is |
| | | // missing due to the whole top area is removed, and it's very hard |
| | | // to bring it back because we have to use a trick in WM_PAINT |
| | | // (learned from Windows Terminal), but no matter what we do in |
| | | // WM_PAINT, it will always break the backing store mechanism of Qt, |
| | | // so actually we can't do it. And it's very difficult to do such |
| | | // things in NativeEventFilters as well. What's worse, if we really |
| | | // do this, the four window borders will become white and they look |
| | | // horrible in dark mode. This solution only supports Windows 10 |
| | | // because the border width on Win10 is only one pixel, however it's |
| | | // eight pixels on Windows 7 so preserving the three window borders |
| | | // looks terrible on old systems. |
| | | // |
| | | // Unlike the 1.x code, we choose to preserve the three edges of the |
| | | // window in 2.x, and get rid of the whole top part of the window. |
| | | // There are quite some advantages such as the appearance looks much |
| | | // better and due to we have the original system window frame, our |
| | | // window can behave just like a normal Win32 window even if we now |
| | | // doesn't have a title bar at all. Most importantly, the flicker and |
| | | // jitter during window resizing is totally gone now. The disadvantage |
| | | // is we have to draw a top frame border ourself. Previously I thought |
| | | // we have to do the black magic in WM_PAINT just like what Windows |
| | | // Terminal does, however, later I found that if we choose a proper |
| | | // color, our homemade top border can almost have exactly the same |
| | | // appearance with the system's one. |
| | | |
| | | [[maybe_unused]] const auto &hitTestRecorder = qScopeGuard([this, result]() { |
| | | lastHitTestResult = getHitWindowPart(int(*result)); // |
| | | }); |
| | | |
| | | POINT nativeGlobalPos{GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam)}; |
| | | POINT nativeLocalPos = nativeGlobalPos; |
| | | ::ScreenToClient(hWnd, &nativeLocalPos); |
| | | |
| | | RECT clientRect{0, 0, 0, 0}; |
| | | ::GetClientRect(hWnd, &clientRect); |
| | | auto clientWidth = RECT_WIDTH(clientRect); |
| | | auto clientHeight = RECT_HEIGHT(clientRect); |
| | | |
| | | QPoint qtScenePos = fromNativeLocalPosition( |
| | | m_windowHandle, QPoint(nativeLocalPos.x, nativeLocalPos.y)); |
| | | |
| | | bool isFixedSize = /*isWindowFixedSize()*/ false; // ### FIXME |
| | | bool isTitleBar = isInTitleBarDraggableArea(qtScenePos); |
| | | bool dontOverrideCursor = false; // ### TODO |
| | | |
| | | CoreWindowAgent::SystemButton sysButtonType = CoreWindowAgent::Unknown; |
| | | if (!isFixedSize && isInSystemButtons(qtScenePos, &sysButtonType)) { |
| | | // Firstly, we set the hit test result to a default value to be able to detect |
| | | // whether we have changed it or not afterwards. |
| | | *result = HTNOWHERE; |
| | | // Even if the mouse is inside the chrome button area now, we should still allow |
| | | // the user to be able to resize the window with the top or right window border, |
| | | // this is also the normal behavior of a native Win32 window (but only when the |
| | | // window is not maximized/fullscreen/minimized, of course). |
| | | if (isWindowNoState(hWnd)) { |
| | | static constexpr const int kBorderSize = 2; |
| | | bool isTop = (nativeLocalPos.y <= kBorderSize); |
| | | bool isRight = (nativeLocalPos.x >= (clientWidth - kBorderSize)); |
| | | if (isTop || isRight) { |
| | | if (dontOverrideCursor) { |
| | | // The user doesn't want the window to be resized, so we tell |
| | | // Windows we are in the client area so that the controls beneath |
| | | // the mouse cursor can still be hovered or clicked. |
| | | *result = (isTitleBar ? HTCAPTION : HTCLIENT); |
| | | } else { |
| | | if (isTop && isRight) { |
| | | *result = HTTOPRIGHT; |
| | | } else if (isTop) { |
| | | *result = HTTOP; |
| | | } else { |
| | | *result = HTRIGHT; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | if (*result == HTNOWHERE) { |
| | | // OK, we are now really inside one of the chrome buttons, tell Windows the |
| | | // exact role of our button. The Snap Layout feature introduced in Windows |
| | | // 11 won't work without this. |
| | | switch (sysButtonType) { |
| | | case CoreWindowAgent::WindowIcon: |
| | | *result = HTSYSMENU; |
| | | break; |
| | | case CoreWindowAgent::Help: |
| | | *result = HTHELP; |
| | | break; |
| | | case CoreWindowAgent::Minimize: |
| | | *result = HTREDUCE; |
| | | break; |
| | | case CoreWindowAgent::Maximize: |
| | | *result = HTZOOM; |
| | | break; |
| | | case CoreWindowAgent::Close: |
| | | *result = HTCLOSE; |
| | | break; |
| | | case CoreWindowAgent::Unknown: |
| | | break; |
| | | default: |
| | | break; // unreachable |
| | | } |
| | | } |
| | | if (*result == HTNOWHERE) { |
| | | // OK, it seems we are not inside the window resize area, nor inside the |
| | | // chrome buttons, tell Windows we are in the client area to let Qt handle |
| | | // this event. |
| | | *result = HTCLIENT; |
| | | } |
| | | return true; |
| | | } |
| | | // OK, we are not inside any chrome buttons, try to find out which part of the |
| | | // window are we hitting. |
| | | |
| | | bool max = IsMaximized(hWnd); |
| | | bool full = isFullScreen(hWnd); |
| | | int frameSize = getResizeBorderThickness(hWnd); |
| | | bool isTop = (nativeLocalPos.y < frameSize); |
| | | |
| | | if (isWin10OrGreater()) { |
| | | // This will handle the left, right and bottom parts of the frame |
| | | // because we didn't change them. |
| | | LRESULT originalHitTestResult = ::DefWindowProcW(hWnd, WM_NCHITTEST, 0, lParam); |
| | | if (originalHitTestResult != HTCLIENT) { |
| | | // Even if the window is not resizable, we still can't return HTCLIENT here |
| | | // because when we enter this code path, it means the mouse cursor is |
| | | // outside the window, that is, the three transparent window resize area. |
| | | // Returning HTCLIENT will confuse Windows, we can't put our controls there |
| | | // anyway. |
| | | *result = ((isFixedSize || dontOverrideCursor) ? HTBORDER |
| | | : originalHitTestResult); |
| | | return true; |
| | | } |
| | | if (full) { |
| | | *result = HTCLIENT; |
| | | return true; |
| | | } |
| | | if (max) { |
| | | *result = (isTitleBar ? HTCAPTION : HTCLIENT); |
| | | return true; |
| | | } |
| | | // At this point, we know that the cursor is inside the client area |
| | | // so it has to be either the little border at the top of our custom |
| | | // title bar or the drag bar. Apparently, it must be the drag bar or |
| | | // the little border at the top which the user can use to move or |
| | | // resize the window. |
| | | if (isTop) { |
| | | // Return HTCLIENT instead of HTBORDER here, because the mouse is |
| | | // inside our homemade title bar now, return HTCLIENT to let our |
| | | // title bar can still capture mouse events. |
| | | *result = ((isFixedSize || dontOverrideCursor) |
| | | ? (isTitleBar ? HTCAPTION : HTCLIENT) |
| | | : HTTOP); |
| | | return true; |
| | | } |
| | | if (isTitleBar) { |
| | | *result = HTCAPTION; |
| | | return true; |
| | | } |
| | | *result = HTCLIENT; |
| | | } else { |
| | | if (full) { |
| | | *result = HTCLIENT; |
| | | return true; |
| | | } |
| | | if (max) { |
| | | *result = (isTitleBar ? HTCAPTION : HTCLIENT); |
| | | return true; |
| | | } |
| | | if (!isFixedSize) { |
| | | const bool isBottom = (nativeLocalPos.y >= (clientHeight - frameSize)); |
| | | // Make the border a little wider to let the user easy to resize on corners. |
| | | const auto scaleFactor = ((isTop || isBottom) ? qreal(2) : qreal(1)); |
| | | const int scaledFrameSizeX = std::round(qreal(frameSize) * scaleFactor); |
| | | const bool isLeft = (nativeLocalPos.x < scaledFrameSizeX); |
| | | const bool isRight = (nativeLocalPos.x >= (clientWidth - scaledFrameSizeX)); |
| | | if (dontOverrideCursor && (isTop || isBottom || isLeft || isRight)) { |
| | | // Return HTCLIENT instead of HTBORDER here, because the mouse is |
| | | // inside the window now, return HTCLIENT to let the controls |
| | | // inside our window can still capture mouse events. |
| | | *result = (isTitleBar ? HTCAPTION : HTCLIENT); |
| | | return true; |
| | | } |
| | | if (isTop) { |
| | | if (isLeft) { |
| | | *result = HTTOPLEFT; |
| | | return true; |
| | | } |
| | | if (isRight) { |
| | | *result = HTTOPRIGHT; |
| | | return true; |
| | | } |
| | | *result = HTTOP; |
| | | return true; |
| | | } |
| | | if (isBottom) { |
| | | if (isLeft) { |
| | | *result = HTBOTTOMLEFT; |
| | | return true; |
| | | } |
| | | if (isRight) { |
| | | *result = HTBOTTOMRIGHT; |
| | | return true; |
| | | } |
| | | *result = HTBOTTOM; |
| | | return true; |
| | | } |
| | | if (isLeft) { |
| | | *result = HTLEFT; |
| | | return true; |
| | | } |
| | | if (isRight) { |
| | | *result = HTRIGHT; |
| | | return true; |
| | | } |
| | | } |
| | | if (isTitleBar) { |
| | | *result = HTCAPTION; |
| | | return true; |
| | | } |
| | | *result = HTCLIENT; |
| | | } |
| | | return true; |
| | | } |
| | | default: |
| | | break; |
| | | } |
| | | return false; |
| | | } |
| | | |
| | | } |