#include "win32windowcontext_p.h" #include #include #include #include #include #include #include #include "qwkcoreglobal_p.h" #include #include namespace QWK { static constexpr const auto kAutoHideTaskBarThickness = quint8{2}; // The thickness of an auto-hide taskbar in pixels. using WndProcHash = QHash; // hWnd -> context Q_GLOBAL_STATIC(WndProcHash, g_wndProcHash) static WNDPROC g_qtWindowProc = nullptr; // Original Qt window proc function struct DynamicApis { decltype(&::DwmFlush) pDwmFlush = nullptr; decltype(&::GetDpiForWindow) pGetDpiForWindow = nullptr; decltype(&::GetSystemMetricsForDpi) pGetSystemMetricsForDpi = nullptr; decltype(&::GetDpiForMonitor) pGetDpiForMonitor = nullptr; DynamicApis() { QSystemLibrary user32(QStringLiteral("user32.dll")); pGetDpiForWindow = reinterpret_cast(user32.resolve("GetDpiForWindow")); pGetSystemMetricsForDpi = reinterpret_cast( user32.resolve("GetSystemMetricsForDpi")); QSystemLibrary shcore(QStringLiteral("shcore.dll")); pGetDpiForMonitor = reinterpret_cast(shcore.resolve("GetDpiForMonitor")); QSystemLibrary dwmapi(QStringLiteral("dwmapi.dll")); pDwmFlush = reinterpret_cast(dwmapi.resolve("DwmFlush")); } ~DynamicApis() = default; static const DynamicApis &instance() { static const DynamicApis inst{}; return inst; } private: Q_DISABLE_COPY_MOVE(DynamicApis) }; static inline constexpr bool operator==(const POINT &lhs, const POINT &rhs) noexcept { return ((lhs.x == rhs.x) && (lhs.y == rhs.y)); } static inline constexpr bool operator!=(const POINT &lhs, const POINT &rhs) noexcept { return !operator==(lhs, rhs); } static inline constexpr bool operator==(const SIZE &lhs, const SIZE &rhs) noexcept { return ((lhs.cx == rhs.cx) && (lhs.cy == rhs.cy)); } static inline constexpr bool operator!=(const SIZE &lhs, const SIZE &rhs) noexcept { return !operator==(lhs, rhs); } static inline constexpr bool operator>(const SIZE &lhs, const SIZE &rhs) noexcept { return ((lhs.cx * lhs.cy) > (rhs.cx * rhs.cy)); } static inline constexpr bool operator>=(const SIZE &lhs, const SIZE &rhs) noexcept { return (operator>(lhs, rhs) || operator==(lhs, rhs)); } static inline constexpr bool operator<(const SIZE &lhs, const SIZE &rhs) noexcept { return (operator!=(lhs, rhs) && !operator>(lhs, rhs)); } static inline constexpr bool operator<=(const SIZE &lhs, const SIZE &rhs) noexcept { return (operator<(lhs, rhs) || operator==(lhs, rhs)); } static inline constexpr bool operator==(const RECT &lhs, const RECT &rhs) noexcept { return ((lhs.left == rhs.left) && (lhs.top == rhs.top) && (lhs.right == rhs.right) && (lhs.bottom == rhs.bottom)); } static inline constexpr bool operator!=(const RECT &lhs, const RECT &rhs) noexcept { return !operator==(lhs, rhs); } static inline constexpr QPoint point2qpoint(const POINT &point) { return QPoint{int(point.x), int(point.y)}; } static inline constexpr POINT qpoint2point(const QPoint &point) { return POINT{LONG(point.x()), LONG(point.y())}; } static inline constexpr QSize size2qsize(const SIZE &size) { return QSize{int(size.cx), int(size.cy)}; } static inline constexpr SIZE qsize2size(const QSize &size) { return SIZE{LONG(size.width()), LONG(size.height())}; } static inline constexpr QRect rect2qrect(const RECT &rect) { return QRect{ QPoint{int(rect.left), int(rect.top) }, QSize{int(RECT_WIDTH(rect)), int(RECT_HEIGHT(rect))} }; } static inline constexpr RECT qrect2rect(const QRect &qrect) { return RECT{LONG(qrect.left()), LONG(qrect.top()), LONG(qrect.right()), LONG(qrect.bottom())}; } static inline /*constexpr*/ QString hwnd2str(const WId windowId) { // NULL handle is allowed here. return QLatin1String("0x") + QString::number(windowId, 16).toUpper().rightJustified(8, u'0'); } static inline /*constexpr*/ QString hwnd2str(HWND hwnd) { // NULL handle is allowed here. return hwnd2str(reinterpret_cast(hwnd)); } static inline bool isWin8Point1OrGreater() { static const bool result = QOperatingSystemVersion::current() >= QOperatingSystemVersion::Windows8_1; return result; } static inline bool isWin10OrGreater() { static const bool result = QOperatingSystemVersion::current() >= QOperatingSystemVersion::Windows10; return result; } static inline quint32 getDpiForWindow(HWND hwnd) { Q_ASSERT(hwnd); if (!hwnd) { return USER_DEFAULT_SCREEN_DPI; } const DynamicApis &apis = DynamicApis::instance(); if (apis.pGetDpiForWindow) { // Win10 return apis.pGetDpiForWindow(hwnd); } else if (apis.pGetDpiForMonitor) { // Win8.1 HMONITOR monitor = ::MonitorFromWindow(hwnd, MONITOR_DEFAULTTONEAREST); UINT dpiX{USER_DEFAULT_SCREEN_DPI}; UINT dpiY{USER_DEFAULT_SCREEN_DPI}; apis.pGetDpiForMonitor(monitor, MDT_EFFECTIVE_DPI, &dpiX, &dpiY); return dpiX; } else { // Win2K HDC hdc = ::GetDC(nullptr); const int dpiX = ::GetDeviceCaps(hdc, LOGPIXELSX); const int dpiY = ::GetDeviceCaps(hdc, LOGPIXELSY); ::ReleaseDC(nullptr, hdc); return quint32(dpiX); } } static inline quint32 getResizeBorderThickness(HWND hwnd) { Q_ASSERT(hwnd); if (!hwnd) { return 0; } const DynamicApis &apis = DynamicApis::instance(); if (apis.pGetSystemMetricsForDpi) { const quint32 dpi = getDpiForWindow(hwnd); return apis.pGetSystemMetricsForDpi(SM_CXSIZEFRAME, dpi) + apis.pGetSystemMetricsForDpi(SM_CXPADDEDBORDER, dpi); } else { return ::GetSystemMetrics(SM_CXSIZEFRAME) + ::GetSystemMetrics(SM_CXPADDEDBORDER); } } static inline std::optional getMonitorForWindow(HWND hwnd) { Q_ASSERT(hwnd); if (!hwnd) { return std::nullopt; } // Use "MONITOR_DEFAULTTONEAREST" here so that we can still get the correct // monitor even if the window is minimized. HMONITOR monitor = ::MonitorFromWindow(hwnd, MONITOR_DEFAULTTONEAREST); MONITORINFOEXW monitorInfo{}; monitorInfo.cbSize = sizeof(monitorInfo); ::GetMonitorInfoW(monitor, &monitorInfo); return monitorInfo; }; static inline bool isFullScreen(HWND hwnd) { Q_ASSERT(hwnd); if (!hwnd) { return false; } RECT windowRect{}; ::GetWindowRect(hwnd, &windowRect); const std::optional mi = getMonitorForWindow(hwnd); // Compare to the full area of the screen, not the work area. return (windowRect == mi.value_or(MONITORINFOEXW{}).rcMonitor); } static inline QPoint fromNativeLocalPosition(const QWindow *window, const QPoint &point) { Q_ASSERT(window); if (!window) { return point; } #if 1 return QHighDpi::fromNativeLocalPosition(point, window); #else return QPointF(QPointF(point) / window->devicePixelRatio()).toPoint(); #endif } static inline Win32WindowContext::WindowPart getHitWindowPart(int hitTestResult) { switch (hitTestResult) { case HTCLIENT: return Win32WindowContext::ClientArea; case HTCAPTION: return Win32WindowContext::TitleBar; case HTSYSMENU: case HTHELP: case HTREDUCE: case HTZOOM: case HTCLOSE: return Win32WindowContext::ChromeButton; case HTLEFT: case HTRIGHT: case HTTOP: case HTTOPLEFT: case HTTOPRIGHT: case HTBOTTOM: case HTBOTTOMLEFT: case HTBOTTOMRIGHT: return Win32WindowContext::ResizeBorder; case HTBORDER: return Win32WindowContext::FixedBorder; default: break; } return Win32WindowContext::Outside; } static bool isValidWindow(HWND hWnd, bool checkVisible, bool checkTopLevel) { if (::IsWindow(hWnd) == FALSE) { return false; } const LONG_PTR styles = ::GetWindowLongPtrW(hWnd, GWL_STYLE); if (styles & WS_DISABLED) { return false; } const LONG_PTR exStyles = ::GetWindowLongPtrW(hWnd, GWL_EXSTYLE); if (exStyles & WS_EX_TOOLWINDOW) { return false; } RECT rect = {0, 0, 0, 0}; if (::GetWindowRect(hWnd, &rect) == FALSE) { return false; } if ((rect.left >= rect.right) || (rect.top >= rect.bottom)) { return false; } if (checkVisible) { if (::IsWindowVisible(hWnd) == FALSE) { return false; } } if (checkTopLevel) { if (::GetAncestor(hWnd, GA_ROOT) != hWnd) { return false; } } return true; } // https://github.com/qt/qtbase/blob/e26a87f1ecc40bc8c6aa5b889fce67410a57a702/src/plugins/platforms/windows/qwindowscontext.cpp#L1556 // In QWindowsContext::windowsProc(), the messages will be passed to all global native event // filters, but because we have already filtered the messages in the hook WndProc function for // convenience, Qt does not know we may have already processed the messages and thus will call // DefWindowProc(). Consequently, we have to add a global native filter that forwards the result // of the hook function, telling Qt whether we have filtered the events before. Since Qt only // handles Windows window messages in the main thread, it is safe to do so. class WindowsNativeEventFilter : public QAbstractNativeEventFilter { public: bool nativeEventFilter(const QByteArray &eventType, void *message, QT_NATIVE_EVENT_RESULT_TYPE *result) override { // It has been observed that the pointer that Qt gives us is sometimes null on some // machines. We need to guard against it in such scenarios. if (!result) { return false; } if (lastMessageHandled) { *result = static_cast(lastMessageResult); return true; } return false; } static bool lastMessageHandled; static LRESULT lastMessageResult; static WindowsNativeEventFilter *instance; static inline void install() { instance = new WindowsNativeEventFilter(); qApp->installNativeEventFilter(instance); } static inline void uninstall() { qApp->removeNativeEventFilter(instance); delete instance; instance = nullptr; } }; bool WindowsNativeEventFilter::lastMessageHandled = false; LRESULT WindowsNativeEventFilter::lastMessageResult = 0; WindowsNativeEventFilter *WindowsNativeEventFilter::instance = nullptr; // https://github.com/qt/qtbase/blob/e26a87f1ecc40bc8c6aa5b889fce67410a57a702/src/plugins/platforms/windows/qwindowscontext.cpp#L1025 // We can see from the source code that Qt will filter out some messages first and then send the // unfiltered messages to the event dispatcher. To activate the Snap Layout feature on Windows // 11, we must process some non-client area messages ourselves, but unfortunately these messages // have been filtered out already in that line, and thus we'll never have the chance to process // them ourselves. This is Qt's low level platform specific code, so we don't have any official // ways to change this behavior. But luckily we can replace the window procedure function of // Qt's windows, and in this hooked window procedure function, we finally have the chance to // process window messages before Qt touches them. So we reconstruct the MSG structure and send // it to our own custom native event filter to do all the magic works. But since the system menu // feature doesn't necessarily belong to the native implementation, we seperate the handling // code and always process the system menu part in this function for both implementations. // // Original event flow: // [Entry] Windows Message Queue // | // [Qt Window Proc] qwindowscontext.cpp#L1547: qWindowsWndProc() // ``` // const bool handled = QWindowsContext::instance()->windowsProc // (hwnd, message, et, wParam, lParam, &result, // &platformWindow); // ``` // | // [Non-Input Filter] qwindowscontext.cpp#L1025: QWindowsContext::windowsProc() // ``` // if (!isInputMessage(msg.message) && // filterNativeEvent(&msg, result)) // return true; // ``` // | // [User Filter] qwindowscontext.cpp#L1588: QWindowsContext::windowsProc() // ``` // QAbstractEventDispatcher *dispatcher = // QAbstractEventDispatcher::instance(); // qintptr filterResult = 0; // if (dispatcher && // dispatcher->filterNativeEvent(nativeEventType(), msg, // &filterResult)) { // *result = LRESULT(filterResult); // return true; // } // ``` // | // [Extra work] The rest of QWindowsContext::windowsProc() and qWindowsWndProc() // // Notice: Only non-input messages will be processed by the user-defined global native event // filter!!! These events are then passed to the widget class's own overridden // QWidget::nativeEvent() as a local filter, where all native events can be handled, but we must // create a new class derived from QWidget which we don't intend to. Therefore, we don't expect // to process events from the global native event filter, but instead hook Qt's window // procedure. extern "C" LRESULT QT_WIN_CALLBACK QWKHookedWndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) { Q_ASSERT(hWnd); if (!hWnd) { return FALSE; } // Search window context auto ctx = g_wndProcHash->value(hWnd); if (!ctx) { return ::DefWindowProcW(hWnd, message, wParam, lParam); } // Try hooked procedure and save result auto &handled = WindowsNativeEventFilter::lastMessageHandled; auto &result = WindowsNativeEventFilter::lastMessageResult; handled = ctx->windowProc(hWnd, message, wParam, lParam, &result); // TODO: Determine whether to show system menu // ... // Since Qt does the necessary processing of the message afterward, we still need to // continue dispatching it. return ::CallWindowProcW(g_qtWindowProc, hWnd, message, wParam, lParam); } Win32WindowContext::Win32WindowContext(QWindow *window, WindowItemDelegate *delegate) : AbstractWindowContext(window, delegate) { } Win32WindowContext::~Win32WindowContext() { // Remove window handle mapping if (auto hWnd = reinterpret_cast(windowId); hWnd) { g_wndProcHash->remove(hWnd); // Remove event filter if the all windows has been destroyed if (g_wndProcHash->empty()) { WindowsNativeEventFilter::uninstall(); } } } bool Win32WindowContext::setup() { auto winId = m_windowHandle->winId(); // Install window hook auto hWnd = reinterpret_cast(winId); // Store original window proc if (!g_qtWindowProc) { g_qtWindowProc = reinterpret_cast(::GetWindowLongPtrW(hWnd, GWLP_WNDPROC)); } // Hook window proc ::SetWindowLongPtrW(hWnd, GWLP_WNDPROC, reinterpret_cast(QWKHookedWndProc)); // Install global native event filter if (!WindowsNativeEventFilter::instance) { WindowsNativeEventFilter::install(); } // Cache window ID windowId = winId; // Save window handle mapping g_wndProcHash->insert(hWnd, this); return true; } bool Win32WindowContext::windowProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam, LRESULT *result) { *result = FALSE; // We should skip these messages otherwise we will get crashes. // NOTE: WM_QUIT won't be posted to the WindowProc function. switch (message) { case WM_CLOSE: case WM_DESTROY: case WM_NCDESTROY: // Undocumented messages: case WM_UAHDESTROYWINDOW: case WM_UNREGISTER_WINDOW_SERVICES: return false; default: break; } if (!isValidWindow(hWnd, false, true)) { return false; } // Test snap layout if (snapLayoutHandler(hWnd, message, wParam, lParam, result)) { return true; } // Main implementation if (customWindowHandler(hWnd, message, wParam, lParam, result)) { return true; } return false; // Not handled } static constexpr const auto kMessageTag = WPARAM(0x97CCEA99); static inline constexpr bool isTaggedMessage(WPARAM wParam) { return (wParam == kMessageTag); } static inline quint64 getKeyState() { quint64 result = 0; const auto &get = [](const int virtualKey) -> bool { return (::GetAsyncKeyState(virtualKey) < 0); }; const bool buttonSwapped = (::GetSystemMetrics(SM_SWAPBUTTON) != FALSE); if (get(VK_LBUTTON)) { result |= (buttonSwapped ? MK_RBUTTON : MK_LBUTTON); } if (get(VK_RBUTTON)) { result |= (buttonSwapped ? MK_LBUTTON : MK_RBUTTON); } if (get(VK_SHIFT)) { result |= MK_SHIFT; } if (get(VK_CONTROL)) { result |= MK_CONTROL; } if (get(VK_MBUTTON)) { result |= MK_MBUTTON; } if (get(VK_XBUTTON1)) { result |= MK_XBUTTON1; } if (get(VK_XBUTTON2)) { result |= MK_XBUTTON2; } return result; } static void emulateClientAreaMessage(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam, const std::optional &overrideMessage = std::nullopt) { const int myMsg = overrideMessage.value_or(message); const auto wParamNew = [myMsg, wParam]() -> WPARAM { if (myMsg == WM_NCMOUSELEAVE) { // wParam is always ignored in mouse leave messages, but here we // give them a special tag to be able to distinguish which messages // are sent by ourselves. return kMessageTag; } const quint64 keyState = getKeyState(); if ((myMsg >= WM_NCXBUTTONDOWN) && (myMsg <= WM_NCXBUTTONDBLCLK)) { const auto xButtonMask = GET_XBUTTON_WPARAM(wParam); return MAKEWPARAM(keyState, xButtonMask); } return keyState; }(); const auto lParamNew = [myMsg, lParam, hWnd]() -> LPARAM { if (myMsg == WM_NCMOUSELEAVE) { // lParam is always ignored in mouse leave messages. return 0; } const auto screenPos = POINT{GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam)}; POINT clientPos = screenPos; ::ScreenToClient(hWnd, &clientPos); return MAKELPARAM(clientPos.x, clientPos.y); }(); #if 0 # define SEND_MESSAGE ::SendMessageW #else # define SEND_MESSAGE ::PostMessageW #endif switch (myMsg) { case WM_NCHITTEST: // Treat hit test messages as mouse move events. case WM_NCMOUSEMOVE: SEND_MESSAGE(hWnd, WM_MOUSEMOVE, wParamNew, lParamNew); break; case WM_NCLBUTTONDOWN: SEND_MESSAGE(hWnd, WM_LBUTTONDOWN, wParamNew, lParamNew); break; case WM_NCLBUTTONUP: SEND_MESSAGE(hWnd, WM_LBUTTONUP, wParamNew, lParamNew); break; case WM_NCLBUTTONDBLCLK: SEND_MESSAGE(hWnd, WM_LBUTTONDBLCLK, wParamNew, lParamNew); break; case WM_NCRBUTTONDOWN: SEND_MESSAGE(hWnd, WM_RBUTTONDOWN, wParamNew, lParamNew); break; case WM_NCRBUTTONUP: SEND_MESSAGE(hWnd, WM_RBUTTONUP, wParamNew, lParamNew); break; case WM_NCRBUTTONDBLCLK: SEND_MESSAGE(hWnd, WM_RBUTTONDBLCLK, wParamNew, lParamNew); break; case WM_NCMBUTTONDOWN: SEND_MESSAGE(hWnd, WM_MBUTTONDOWN, wParamNew, lParamNew); break; case WM_NCMBUTTONUP: SEND_MESSAGE(hWnd, WM_MBUTTONUP, wParamNew, lParamNew); break; case WM_NCMBUTTONDBLCLK: SEND_MESSAGE(hWnd, WM_MBUTTONDBLCLK, wParamNew, lParamNew); break; case WM_NCXBUTTONDOWN: SEND_MESSAGE(hWnd, WM_XBUTTONDOWN, wParamNew, lParamNew); break; case WM_NCXBUTTONUP: SEND_MESSAGE(hWnd, WM_XBUTTONUP, wParamNew, lParamNew); break; case WM_NCXBUTTONDBLCLK: SEND_MESSAGE(hWnd, WM_XBUTTONDBLCLK, wParamNew, lParamNew); break; #if 0 // ### TODO: How to handle touch events? case WM_NCPOINTERUPDATE: case WM_NCPOINTERDOWN: case WM_NCPOINTERUP: break; #endif case WM_NCMOUSEHOVER: SEND_MESSAGE(hWnd, WM_MOUSEHOVER, wParamNew, lParamNew); break; case WM_NCMOUSELEAVE: SEND_MESSAGE(hWnd, WM_MOUSELEAVE, wParamNew, lParamNew); break; default: break; } #undef SEND_MESSAGE } static inline void requestForMouseLeaveMessage(HWND hWnd, bool nonClient) { TRACKMOUSEEVENT tme{}; tme.cbSize = sizeof(tme); tme.dwFlags = TME_LEAVE; if (nonClient) { tme.dwFlags |= TME_NONCLIENT; } tme.hwndTrack = hWnd; tme.dwHoverTime = HOVER_DEFAULT; ::TrackMouseEvent(&tme); } bool Win32WindowContext::snapLayoutHandler(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam, LRESULT *result) { switch (message) { case WM_MOUSELEAVE: { if (!isTaggedMessage(wParam)) { // Qt will call TrackMouseEvent() to get the WM_MOUSELEAVE message when it // receives WM_MOUSEMOVE messages, and since we are converting every // WM_NCMOUSEMOVE message to WM_MOUSEMOVE message and send it back to the window // to be able to hover our controls, we also get lots of WM_MOUSELEAVE messages // at the same time because of the reason above, and these superfluous mouse // leave events cause Qt to think the mouse has left the control, and thus we // actually lost the hover state. So we filter out these superfluous mouse leave // events here to avoid this issue. DWORD dwScreenPos = ::GetMessagePos(); QPoint qtScenePos = fromNativeLocalPosition(m_windowHandle, QPoint(GET_X_LPARAM(dwScreenPos), GET_Y_LPARAM(dwScreenPos))); auto dummy = CoreWindowAgent::Unknown; if (isInSystemButtons(qtScenePos, &dummy)) { // We must record whether the last WM_MOUSELEAVE was filtered, because if // Qt does not receive this message it will not call TrackMouseEvent() // again, resulting in the client area not responding to any mouse event. mouseLeaveBlocked = true; *result = FALSE; return true; } } mouseLeaveBlocked = false; break; } case WM_MOUSEMOVE: { // At appropriate time, we will call TrackMouseEvent() for Qt. Simultaneously, // we unset `mouseLeaveBlocked` mark and pretend as if Qt has received // WM_MOUSELEAVE. if (lastHitTestResult != WindowPart::ChromeButton && mouseLeaveBlocked) { mouseLeaveBlocked = false; requestForMouseLeaveMessage(hWnd, false); } break; } case WM_NCMOUSEMOVE: case WM_NCLBUTTONDOWN: case WM_NCLBUTTONUP: case WM_NCLBUTTONDBLCLK: case WM_NCRBUTTONDOWN: case WM_NCRBUTTONUP: case WM_NCRBUTTONDBLCLK: case WM_NCMBUTTONDOWN: case WM_NCMBUTTONUP: case WM_NCMBUTTONDBLCLK: case WM_NCXBUTTONDOWN: case WM_NCXBUTTONUP: case WM_NCXBUTTONDBLCLK: #if 0 // ### TODO: How to handle touch events? case WM_NCPOINTERUPDATE: case WM_NCPOINTERDOWN: case WM_NCPOINTERUP: #endif case WM_NCMOUSEHOVER: { const WindowPart currentWindowPart = lastHitTestResult; if (message == WM_NCMOUSEMOVE) { if (currentWindowPart != WindowPart::ChromeButton) { std::ignore = m_delegate->resetQtGrabbedControl(); if (mouseLeaveBlocked) { emulateClientAreaMessage(hWnd, message, wParam, lParam, WM_NCMOUSELEAVE); } } // We need to make sure we get the right hit-test result when a WM_NCMOUSELEAVE // comes, so we reset it when we receive a WM_NCMOUSEMOVE. // If the mouse is entering the client area, there must be a WM_NCHITTEST // setting it to `Client` before the WM_NCMOUSELEAVE comes; if the mouse is // leaving the window, current window part remains as `Outside`. lastHitTestResult = WindowPart::Outside; } if (currentWindowPart == WindowPart::ChromeButton) { emulateClientAreaMessage(hWnd, message, wParam, lParam); if (message == WM_NCMOUSEMOVE) { // ### FIXME FIXME FIXME // ### FIXME: Calling DefWindowProc() here is really dangerous, investigate // how to avoid doing this. // ### FIXME FIXME FIXME *result = ::DefWindowProcW(hWnd, WM_NCMOUSEMOVE, wParam, lParam); } else { // According to MSDN, we should return non-zero for X button messages to // indicate we have handled these messages (due to historical reasons), for // all other messages we should return zero instead. *result = (((message >= WM_NCXBUTTONDOWN) && (message <= WM_NCXBUTTONDBLCLK)) ? TRUE : FALSE); } return true; } break; } case WM_NCMOUSELEAVE: { const WindowPart currentWindowPart = lastHitTestResult; if (currentWindowPart == WindowPart::ChromeButton) { // If we press on the chrome button and move mouse, Windows will take the // pressing area as HTCLIENT which maybe because of our former retransmission of // WM_NCLBUTTONDOWN, as a result, a WM_NCMOUSELEAVE will come immediately and a // lot of WM_MOUSEMOVE will come if we move the mouse, we should track the mouse // in advance. if (mouseLeaveBlocked) { mouseLeaveBlocked = false; requestForMouseLeaveMessage(hWnd, false); } } else { if (mouseLeaveBlocked) { // The mouse is moving from the chrome button to other non-client area, we // should emulate a WM_MOUSELEAVE message to reset the button state. emulateClientAreaMessage(hWnd, message, wParam, lParam, WM_NCMOUSELEAVE); } if (currentWindowPart == WindowPart::Outside) { // Notice: we're not going to clear window part cache when the mouse leaves // window from client area, which means we will get previous window part as // HTCLIENT if the mouse leaves window from client area and enters window // from non-client area, but it has no bad effect. std::ignore = m_delegate->resetQtGrabbedControl(); } } break; } default: break; } return false; } bool Win32WindowContext::customWindowHandler(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam, LRESULT *result) { switch (message) { case WM_NCCALCSIZE: { // Windows是根据这个消息的返回值来设置窗口的客户区(窗口中真正显示的内容) // 和非客户区(标题栏、窗口边框、菜单栏和状态栏等Windows系统自行提供的部分 // ,不过对于Qt来说,除了标题栏和窗口边框,非客户区基本也都是自绘的)的范 // 围的,lParam里存放的就是新客户区的几何区域,默认是整个窗口的大小,正常 // 的程序需要修改这个参数,告知系统窗口的客户区和非客户区的范围(一般来说可 // 以完全交给Windows,让其自行处理,使用默认的客户区和非客户区),因此如果 // 我们不修改lParam,就可以使客户区充满整个窗口,从而去掉标题栏和窗口边框 // (因为这些东西都被客户区给盖住了。但边框阴影也会因此而丢失,不过我们会使 // 用其他方式将其带回,请参考其他消息的处理,此处不过多提及)。但有个情况要 // 特别注意,那就是窗口最大化后,窗口的实际尺寸会比屏幕的尺寸大一点,从而使 // 用户看不到窗口的边界,这样用户就不能在窗口最大化后调整窗口的大小了(虽然 // 这个做法听起来特别奇怪,但Windows确实就是这样做的),因此如果我们要自行 // 处理窗口的非客户区,就要在窗口最大化后,将窗口边框的宽度和高度(一般是相 // 等的)从客户区裁剪掉,否则我们窗口所显示的内容就会超出屏幕边界,显示不全。 // 如果用户开启了任务栏自动隐藏,在窗口最大化后,还要考虑任务栏的位置。因为 // 如果窗口最大化后,其尺寸和屏幕尺寸相等(因为任务栏隐藏了,所以窗口最大化 // 后其实是充满了整个屏幕,变相的全屏了),Windows会认为窗口已经进入全屏的 // 状态,从而导致自动隐藏的任务栏无法弹出。要避免这个状况,就要使窗口的尺寸 // 小于屏幕尺寸。我下面的做法参考了火狐、Chromium和Windows Terminal // 如果没有开启任务栏自动隐藏,是不存在这个问题的,所以要先进行判断。 // 一般情况下,*result设置为0(相当于DefWindowProc的返回值为0)就可以了, // 根据MSDN的说法,返回0意为此消息已经被程序自行处理了,让Windows跳过此消 // 息,否则Windows会添加对此消息的默认处理,对于当前这个消息而言,就意味着 // 标题栏和窗口边框又会回来,这当然不是我们想要的结果。根据MSDN,当wParam // 为FALSE时,只能返回0,但当其为TRUE时,可以返回0,也可以返回一个WVR_常 // 量。根据Chromium的注释,当存在非客户区时,如果返回WVR_REDRAW会导致子 // 窗口/子控件出现奇怪的bug(自绘控件错位),并且Lucas在Windows 10 // 上成功复现,说明这个bug至今都没有解决。我查阅了大量资料,发现唯一的解决 // 方案就是返回0。但如果不存在非客户区,且wParam为TRUE,最好返回 // WVR_REDRAW,否则窗口在调整大小可能会产生严重的闪烁现象。 // 虽然对大多数消息来说,返回0都代表让Windows忽略此消息,但实际上不同消息 // 能接受的返回值是不一样的,请注意自行查阅MSDN。 // Sent when the size and position of a window's client area must be // calculated. By processing this message, an application can // control the content of the window's client area when the size or // position of the window changes. If wParam is TRUE, lParam points // to an NCCALCSIZE_PARAMS structure that contains information an // application can use to calculate the new size and position of the // client rectangle. If wParam is FALSE, lParam points to a RECT // structure. On entry, the structure contains the proposed window // rectangle for the window. On exit, the structure should contain // the screen coordinates of the corresponding window client area. // The client area is the window's content area, the non-client area // is the area which is provided by the system, such as the title // bar, the four window borders, the frame shadow, the menu bar, the // status bar, the scroll bar, etc. But for Qt, it draws most of the // window area (client + non-client) itself. We now know that the // title bar and the window frame is in the non-client area, and we // can set the scope of the client area in this message, so we can // remove the title bar and the window frame by let the non-client // area be covered by the client area (because we can't really get // rid of the non-client area, it will always be there, all we can // do is to hide it) , which means we should let the client area's // size the same with the whole window's size. So there is no room // for the non-client area and then the user won't be able to see it // again. But how to achieve this? Very easy, just leave lParam (the // re-calculated client area) untouched. But of course you can // modify lParam, then the non-client area will be seen and the // window borders and the window frame will show up. However, things // are quite different when you try to modify the top margin of the // client area. DWM will always draw the whole title bar no matter // what margin value you set for the top, unless you don't modify it // and remove the whole top area (the title bar + the one pixel // height window border). This can be confirmed in Windows // Terminal's source code, you can also try yourself to verify // it. So things will become quite complicated if you want to // preserve the four window borders. // If `wParam` is `FALSE`, `lParam` points to a `RECT` that contains // the proposed window rectangle for our window. During our // processing of the `WM_NCCALCSIZE` message, we are expected to // modify the `RECT` that `lParam` points to, so that its value upon // our return is the new client area. We must return 0 if `wParam` // is `FALSE`. // If `wParam` is `TRUE`, `lParam` points to a `NCCALCSIZE_PARAMS` // struct. This struct contains an array of 3 `RECT`s, the first of // which has the exact same meaning as the `RECT` that is pointed to // by `lParam` when `wParam` is `FALSE`. The remaining `RECT`s, in // conjunction with our return value, can // be used to specify portions of the source and destination window // rectangles that are valid and should be preserved. We opt not to // implement an elaborate client-area preservation technique, and // simply return 0, which means "preserve the entire old client area // and align it with the upper-left corner of our new client area". const auto clientRect = ((wParam == FALSE) ? reinterpret_cast(lParam) : &(reinterpret_cast(lParam))->rgrc[0]); if (isWin10OrGreater()) { // Store the original top margin before the default window procedure applies the // default frame. const LONG originalTop = clientRect->top; // Apply the default frame because we don't want to remove the whole window // frame, we still need the standard window frame (the resizable frame border // and the frame shadow) for the left, bottom and right edges. If we return 0 // here directly, the whole window frame will be removed (which means there will // be no resizable frame border and the frame shadow will also disappear), and // that's also how most applications customize their title bars on Windows. It's // totally OK but since we want to preserve as much original frame as possible, // we can't use that solution. const LRESULT hitTestResult = ::DefWindowProcW(hWnd, WM_NCCALCSIZE, wParam, lParam); if ((hitTestResult != HTERROR) && (hitTestResult != HTNOWHERE)) { *result = hitTestResult; return true; } // Re-apply the original top from before the size of the default frame was // applied, and the whole top frame (the title bar and the top border) is gone // now. For the top frame, we only has 2 choices: (1) remove the top frame // entirely, or (2) don't touch it at all. We can't preserve the top border by // adjusting the top margin here. If we try to modify the top margin, the // original title bar will always be painted by DWM regardless what margin we // set, so here we can only remove the top frame entirely and use some special // technique to bring the top border back. clientRect->top = originalTop; } const bool max = IsMaximized(hWnd); const bool full = isFullScreen(hWnd); // We don't need this correction when we're fullscreen. We will // have the WS_POPUP size, so we don't have to worry about // borders, and the default frame will be fine. if (max && !full) { // When a window is maximized, its size is actually a little bit more // than the monitor's work area. The window is positioned and sized in // such a way that the resize handles are outside the monitor and // then the window is clipped to the monitor so that the resize handle // do not appear because you don't need them (because you can't resize // a window when it's maximized unless you restore it). const quint32 frameSize = getResizeBorderThickness(hWnd); clientRect->top += frameSize; if (!isWin10OrGreater()) { clientRect->bottom -= frameSize; clientRect->left += frameSize; clientRect->right -= frameSize; } } // Attempt to detect if there's an autohide taskbar, and if // there is, reduce our size a bit on the side with the taskbar, // so the user can still mouse-over the taskbar to reveal it. // Make sure to use MONITOR_DEFAULTTONEAREST, so that this will // still find the right monitor even when we're restoring from // minimized. if (max || full) { APPBARDATA abd{}; abd.cbSize = sizeof(abd); const UINT taskbarState = ::SHAppBarMessage(ABM_GETSTATE, &abd); // First, check if we have an auto-hide taskbar at all: if (taskbarState & ABS_AUTOHIDE) { bool top = false, bottom = false, left = false, right = false; // Due to ABM_GETAUTOHIDEBAREX was introduced in Windows 8.1, // we have to use another way to judge this if we are running // on Windows 7 or Windows 8. if (isWin8Point1OrGreater()) { const std::optional monitorInfo = getMonitorForWindow(hWnd); const RECT monitorRect = monitorInfo.value().rcMonitor; // This helper can be used to determine if there's an // auto-hide taskbar on the given edge of the monitor // we're currently on. const auto hasAutohideTaskbar = [monitorRect](const UINT edge) -> bool { APPBARDATA abd2{}; abd2.cbSize = sizeof(abd2); abd2.uEdge = edge; abd2.rc = monitorRect; const auto hTaskbar = reinterpret_cast( ::SHAppBarMessage(ABM_GETAUTOHIDEBAREX, &abd2)); return (hTaskbar != nullptr); }; top = hasAutohideTaskbar(ABE_TOP); bottom = hasAutohideTaskbar(ABE_BOTTOM); left = hasAutohideTaskbar(ABE_LEFT); right = hasAutohideTaskbar(ABE_RIGHT); } else { int edge = -1; APPBARDATA abd2{}; abd2.cbSize = sizeof(abd2); abd2.hWnd = ::FindWindowW(L"Shell_TrayWnd", nullptr); HMONITOR windowMonitor = ::MonitorFromWindow(hWnd, MONITOR_DEFAULTTONEAREST); HMONITOR taskbarMonitor = ::MonitorFromWindow(abd2.hWnd, MONITOR_DEFAULTTOPRIMARY); if (taskbarMonitor == windowMonitor) { ::SHAppBarMessage(ABM_GETTASKBARPOS, &abd2); edge = int(abd2.uEdge); } top = (edge == ABE_TOP); bottom = (edge == ABE_BOTTOM); left = (edge == ABE_LEFT); right = (edge == ABE_RIGHT); } // If there's a taskbar on any side of the monitor, reduce // our size a little bit on that edge. // Note to future code archeologists: // This doesn't seem to work for fullscreen on the primary // display. However, testing a bunch of other apps with // fullscreen modes and an auto-hiding taskbar has // shown that _none_ of them reveal the taskbar from // fullscreen mode. This includes Edge, Firefox, Chrome, // Sublime Text, PowerPoint - none seemed to support this. // This does however work fine for maximized. if (top) { // Peculiarly, when we're fullscreen, clientRect->top += kAutoHideTaskBarThickness; } else if (bottom) { clientRect->bottom -= kAutoHideTaskBarThickness; } else if (left) { clientRect->left += kAutoHideTaskBarThickness; } else if (right) { clientRect->right -= kAutoHideTaskBarThickness; } } } // ### TODO: std::ignore = Utils::syncWmPaintWithDwm(); // This should be executed // at the very last. By returning WVR_REDRAW we can make the window resizing look // less broken. But we must return 0 if wParam is FALSE, according to Microsoft // Docs. // **IMPORTANT NOTE**: // If you are drawing something manually through D3D in your window, don't // try to return WVR_REDRAW here, otherwise Windows exhibits bugs where // client pixels and child windows are mispositioned by the width/height // of the upper-left non-client area. It's confirmed that this issue exists // from Windows 7 to Windows 10. Not tested on Windows 11 yet. Don't know // whether it exists on Windows XP to Windows Vista or not. *result = wParam == FALSE ? FALSE : WVR_REDRAW; return true; } default: break; } return false; } }